Rayleigh-Ritz Majorization Error Bounds with Applications to FEM

نویسندگان

  • Andrew V. Knyazev
  • Merico E. Argentati
چکیده

The Rayleigh-Ritz (RR) method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in the Ritz values of A with respect to X compared to the Ritz values with respect to Y represent the RR absolute eigenvalue approximation error. Our first main result is a sharp majorization-type RR error bound in terms of the principal angles between X and Y for an arbitrary A-invariant X , which was a conjecture in [SIAM J. Matrix Anal. Appl., 30 (2008), pp. 548-559]. Second, we prove a novel type of RR error bound that deals with the products of the errors, rather than the sums. Third, we establish majorization bounds for the relative errors. We extend our bounds to the case dimX ≤ dimY < ∞ in Hilbert spaces and apply them in the context of the finite element method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh-ritz Majorization Error Bounds with Applications to Fem and Subspace Iterations

The Rayleigh-Ritz method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in the Ri...

متن کامل

Majorization Bounds for Ritz Values of Hermitian Matrices∗

Given an approximate invariant subspace we discuss the effectiveness of majorization bounds for assessing the accuracy of the resulting Rayleigh-Ritz approximations to eigenvalues of Hermitian matrices. We derive a slightly stronger result than previously for the approximation of k extreme eigenvalues, and examine some advantages of these majorization bounds compared with classical bounds. From...

متن کامل

Electronic Transactions on Numerical Analysis

Given an approximate invariant subspace we discuss the effectiveness of majorization bounds for assessing the accuracy of the resulting Rayleigh-Ritz approximations to eigenvalues of Hermitian matrices. We derive a slightly stronger result than previously for the approximation of k extreme eigenvalues, and examine some advantages of these majorization bounds compared with classical bounds. From...

متن کامل

Bounds on Changes in Ritz Values for a Perturbed Invariant Subspace of a Hermitian Matrix

The Rayleigh–Ritz method is widely used for eigenvalue approximation. Given a matrix X with columns that form an orthonormal basis for a subspace X , and a Hermitian matrix A, the eigenvalues of XHAX are called Ritz values of A with respect to X . If the subspace X is A-invariant, then the Ritz values are some of the eigenvalues of A. If the A-invariant subspace X is perturbed to give rise to a...

متن کامل

Optimal a priori error bounds for the Rayleigh - Ritz method by Gerard

We derive error bounds for the Rayleigh-Ritz method for the approximation to extremal eigenpairs of a symmetric matrix. The bounds are expressed in terms of the eigenvalues of the matrix and the angle between the subspace and the eigenvector. We also present a sharp bound.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009